## Review Quiz 3

Instructions. You have 15 minutes to complete this review quiz. You may use your calculator. You may not use any other materials. Submit your answers using the provided Google Form.

$$
(1,2) \text { is a cnitical point }
$$

1. If $f_{x}(1,2)=f_{y}(1,2)=0, f_{x x}(1,2)=3, f_{y y}(1,2)=5$, and $f_{x y}(1,2)=2$, then:
(a) $f$ has a local minimum at $(1,2)$
(b) $f$ has a local maximum at $(1,2)$
(c) $f$ has a saddle point at $(1,2)$
(d) $f$ has neither a local extreme point nor a saddle point at $(1,2)$
(e) There is not enough information to determine the behavior of $f$ at $(1,2)$
2. You want to use Lagrange multipliers to find two positive numbers $x$ and $y$ that add up to 1000 and whose product is maximum. Which of the following systems of equations do you need to solve?
(a) $y=\lambda x, x=\lambda y, x+y=1000$
(b) $1000=\lambda x, 1000=\lambda y, x+y=1000$
(c) $x y=\lambda, x+y=\lambda, x+y=1000$
(d) $y=\lambda(x+y), x=\lambda(x+y), x+y=1000$
(e) $y=\lambda, x=\lambda, x+y=1000$

$$
\left.\begin{array}{c}
D=f_{x x} f_{y y}-f_{x y}^{2} \Rightarrow D(1,2)=3(5)-2^{2}=11>0 \\
f_{x x}(1,2)=3>0
\end{array}\right\} \begin{gathered}
\text { local } \min _{\text {at }}(1,2)
\end{gathered}
$$

$$
\begin{aligned}
& \left.\nabla f(x, y)=\langle y, x\rangle \quad \Rightarrow L M_{\text {eqs }:} \quad \begin{array}{rl}
y & =\lambda \\
x & =\lambda
\end{array}\right\} \nabla f=\lambda \nabla g .
\end{aligned}
$$

$$
x+y=1000
$$

3. We can approximate the double integral $\int_{0}^{6} \int_{0}^{6} f(x, y) d y d x$ with a Riemann sum by partitioning the region with $0 \leq x \leq 6$ and $0 \leq y \leq 6$ into four equal squares. Which expression could arise as our approximation?
(a) $[f(3,3)+f(3,6)+f(6,3)+f(6,6)] \cdot 4$
(b) $[f(3,3)+f(3,6)+f(6,3)+f(6,6)] \cdot 6$
(c) $[f(3,3)+f(3,6)+f(6,3)+f(6,6)] \cdot 9$
(d) $[f(3,3)+f(3,6)+f(6,3)+f(6,6)] \cdot 16$
(e) $[f(3,3)+f(3,6)+f(6,3)+f(6,6)] \cdot 36$

4. Which solid has volume described by the triple integral $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{2} 1 d z d y d x$ ?
(a) sphere
(b) hemisphere
(c) cone
(d) cylinder
(e) cube

between
$z=0$
and
$z=2$
5. The iterated integral $\int_{-2}^{0} \int_{0}^{-x} f(x, y) d y d x$ must be equal to
(a) $\int_{0}^{-x} \int_{-2}^{0} f(x, y) d x d y$
(b) $\int_{0}^{2} \int_{-y}^{-2} f(x, y) d x d y$
(c) $\int_{-2}^{0} \int_{0}^{-y} f(x, y) d x d y$
(d) $\int_{0}^{2} \int_{-2}^{-y} f(x, y) d x d y$
(e) $\int_{-2}^{0} \int_{-y}^{0} f(x, y) d x d y$

